* Drugs that act directly on the renin-angiotensin system can cause injury and death to the developing fetus. (5.1)
Amlodipine and valsartan is indicated for the treatment of hypertension, to lower blood pressure. Lowering blood pressure reduces the risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial infarctions. These benefits have been seen in controlled trials of antihypertensive drugs from a wide variety of pharmacologic classes, including amlodipine and the angiotensin II receptor blocker (ARB) class to which valsartan principally belongs. There are no controlled trials demonstrating risk reduction with amlodipine and valsartan.
Control of high blood pressure should be part of comprehensive cardiovascular risk management, including, as appropriate, lipid control, diabetes management, antithrombotic therapy, smoking cessation, exercise, and limited sodium intake. Many patients will require more than 1 drug to achieve blood pressure goals. For specific advice on goals and management, see published guidelines, such as those of the National High Blood Pressure Education Program's Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC).
Numerous antihypertensive drugs, from a variety of pharmacologic classes and with different mechanisms of action, have been shown in randomized controlled trials to reduce cardiovascular morbidity and mortality, and it can be concluded that it is blood pressure reduction, and not some other pharmacologic property of the drugs, that is largely responsible for those benefits. The largest and most consistent cardiovascular outcome benefit has been a reduction in the risk of stroke, but reductions in myocardial infarction and cardiovascular mortality also have been seen regularly.
Elevated systolic or diastolic pressure causes increased cardiovascular risk, and the absolute risk increase per mmHg is greater at higher blood pressures, so that even modest reductions of severe hypertension can provide substantial benefit. Relative risk reduction from blood pressure reduction is similar across populations with varying absolute risk, so the absolute benefit is greater in patients who are at higher risk independent of their hypertension (for example, patients with diabetes or hyperlipidemia), and such patients would be expected to benefit from more aggressive treatment to a lower blood pressure goal.
Some antihypertensive drugs have smaller blood pressure effects (as monotherapy) in black patients, and many antihypertensive drugs have additional approved indications and effects (e.g., on angina, heart failure, or diabetic kidney disease). These considerations may guide selection of therapy. Amlodipine and valsartan is indicated for the treatment of hypertension.
Amlodipine and valsartan may be used in patients whose blood pressure is not adequately controlled on either monotherapy.
Amlodipine and valsartan may also be used as initial therapy in patients who are likely to need multiple drugs to achieve their blood pressure goals.
The choice of amlodipine and valsartan as initial therapy for hypertension should be based on an assessment of potential benefits and risks including whether the patient is likely to tolerate the lowest dose of amlodipine and valsartan.
Patients with stage 2 hypertension (moderate or severe) are at a relatively higher risk for cardiovascular events (such as strokes, heart attacks, and heart failure), kidney failure and vision problems, so prompt treatment is clinically relevant. The decision to use a combination as initial therapy should be individualized and should be shaped by considerations such as baseline blood pressure, the target goal and the incremental likelihood of achieving goal with a combination compared to monotherapy. Individual blood pressure goals may vary based upon the patient's risk.
Data from the high-dose multifactorial study [see Clinical Studies (14)] provide estimates of the probability of reaching a blood pressure goal with amlodipine and valsartan compared to amlodipine or valsartan monotherapy. The figures below provide estimates of the likelihood of achieving systolic or diastolic blood pressure control with amlodipine and valsartan 10/320 mg, based upon baseline systolic or diastolic blood pressure. The curve of each treatment group was estimated by logistic regression modeling. The estimated likelihood at the right tail of each curve is less reliable due to small numbers of subjects with high baseline blood pressures.
Figure 1: Probability of Achieving Systolic Blood Pressure <140 mmHg at Week 8
Figure 2: Probability of Achieving Diastolic Blood Pressure <90 mmHg at Week 8
Figure 3: Probability of Achieving Systolic Blood Pressure <130 mmHg at Week 8
Figure 4: Probability of Achieving Diastolic Blood Pressure <80 mmHg at Week 8
For example, a patient with a baseline blood pressure of 160/100 mmHg has about a 67% likelihood of achieving a goal
of <140 mmHg (systolic) and 80% likelihood of achieving <90 mmHg (diastolic) on amlodipine alone, and the likelihood
of achieving these goals on valsartan alone is about 47% (systolic) or 62% (diastolic). The likelihood of achieving these
goals on amlodipine and valsartan rises to about 80% (systolic) or 85% (diastolic). The likelihood of achieving these goals
on placebo is about 28% (systolic) or 37% (diastolic).